Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Host-managed shingled magnetic recording drives (HMSMR) give a capacity advantage to harness the explosive growth of data. Applications where data is sequentially written and randomly read, such as key-value stores based on Log-Structured Merge Trees (LSM-trees), make the HMSMR an ideal solution due to its capacity, predictable performance, and economical cost. However, building an LSMtree based KV store on HM-SMR drives presents severe challenges in maintaining the performance and space efficiency due to the redundant cleaning processes for applications and storage devices (i.e., compaction and garbage collections). To eliminate the overhead of on-disk garbage collections (GC) and improve compaction efficiency, this paper presents GearDB, a GC-free KV store tailored for HMSMR drives. GearDB proposes three new techniques: a new on-disk data layout, compaction windows, and a novel gear compaction algorithm. We implement and evaluate GearDB with LevelDB on a real HM-SMR drive. Our extensive experiments have shown that GearDB achieves both good performance and space efficiency, i.e., on average 1:71 faster than LevelDB in random write with a space efficiency of 89.9%.more » « less
-
Key-value (KV) stores play an increasingly critical role in supporting diverse large-scale applications in modern data centers hosting terabytes of KV items which even might reside on a single server due to virtualization purpose. The combination of ever growing volume of KV items and storage/application consolidation is driving a trend of high storage density for KV stores. Shingled Magnetic Recording (SMR) represents a promising technology for increasing disk capacity, but it comes at a cost of poor random write performance and severe I/O amplification. Applications/software working with SMR devices need to be designed and optimized in an SMR-friendly manner. In this work, we present SEALDB, a Log-Structured Merge tree (LSM-tree) based key-value store that is specifically op- timized for and works well with SMR drives via adequately addressing the poor random writes and severe I/O amplification issues. First, for LSM-trees, SEALDB concatenates SSTables of each compaction, and groups them into sets. Taking sets as the basic unit for compactions, SEALDB improves compaction efficiency by mitigating random I/Os. Second, SEALDB creates varying size bands on HM-SMR drives, named dynamic bands. Dynamic bands not only accommodate the storage of sets, but also eliminate the auxiliary write amplification from SMR drives. We demonstrate the advantages of SEALDB via extensive experiments in various workloads. Overall, SEALDB delivers impressive performance improvement. Compared with LevelDB, SEALDB is 3.42× faster on random load due to improved compaction efficiency and eliminated auxiliary write amplification on SMR drives.more » « less
-
Abstract Gravitational lensing by massive objects along the line of sight to the source causes distortions to gravitational wave (GW) signals; such distortions may reveal information about fundamental physics, cosmology, and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO-Virgo network. We search for repeated signals from strong lensing by (1) performing targeted searches for subthreshold signals, (2) calculating the degree of overlap among the intrinsic parameters and sky location of pairs of signals, (3) comparing the similarities of the spectrograms among pairs of signals, and (4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by (1) frequency-independent phase shifts in strongly lensed images, and (2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the nondetection of GW lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects.more » « less
-
Abstract KAGRA, the underground and cryogenic gravitational-wave detector, was operated for its solo observation from February 25 to March 10, 2020, and its first joint observation with the GEO 600 detector from April 7 to April 21, 2020 (O3GK). This study presents an overview of the input optics systems of the KAGRA detector, which consist of various optical systems, such as a laser source, its intensity and frequency stabilization systems, modulators, a Faraday isolator, mode-matching telescopes, and a high-power beam dump. These optics were successfully delivered to the KAGRA interferometer and operated stably during the observations. The laser frequency noise was observed to limit the detector sensitivity above a few kilohertz, whereas the laser intensity did not significantly limit the detector sensitivity.more » « less
An official website of the United States government

Full Text Available